BOL. SOC. BRAS. MAT. VOL. 9, N.° 1 (1978), 83 - 87 83
An inequality for the entropy of differentiable maps

David Ruelle*

1. Introduction and statement of results.

The purpose of this note is to prove Theorem 2 below, which gives an
upper bound to the measure-theoretic entropy h(p) of any probability
measure p invariant under a differentiable map f of a compact manifold
M into itself. The upper bound is in terms of characteristic exponents
introduced by the non-commutative ergodic theorem of Oseledec [2].
We first formulate a version of the latter theorem which will be suited to
our purposes. '

Theorem 1. Let (M,Z,p) be a probability space and t:M - M a
measurable map preserving p. Let also T: M — .# (IR) be a measurable map
into the m x m matrices, such that*

log"IT()lle L'(M, p)
and write T!=T(z""'x)... T(tx) T(x).
There i1s € < M such that p(Q)=1 and for all xeQ

(1) lim (T T7)'/2" =A

n—>w

X

exists [* denotes matrix transposition].

Let exp A1 < ... <exp ™ be the eigencalues of A [with possibly
iV =—c], and U, .., U™ the corresponding eigenspaces. 1f V'n=
=U"+ ...+ U we have

.1 e
lim —;’—log ITull = A% when ueV™\prD

for r=1,...,5s(x).

The theorem published by Oseledec assumes t and T invertible. Its
proof has been simplified by Raghunathan [4]. The above result can be
obtained by modifying Raghunathan’s argument.

Recebido em setembro de 1977.
* We write log* x = max {0, log x}.



84 D. Ruelle

Let m” =dimU!” =dim V" — dim ¥ """. The numbers Ai'')....,
A8 with multlphcxtles mt,. .m‘“‘*” constitute the spectrum of (p. T, T)

at x. The 4" are also cal]ed character:snc exponents. When n tends to oc,

1 . . Y
—log |TZ|l tends to the maximum characteristic exponent A**”. The
n

spectrum is t-invariant; if p is t-ergodic the spectrum is almost every
where constant.

Let TA? : M — .,//(m)(lR) be the p-th exterior power of T;

p

we have
TAP(1" ™ x) ... TA(tx) T*P(x) = (T")*

and the spectrum of (p,t, T*?) is determined by

£
lim [(THAPHTHAP]2n = A AP,

n—+oo

For T" =@, T"? we obtain in particular

2) lim ilog (T = ) /‘,’"" Vi
nmr o r:}.f\r)>0

Theorem 2. Let M be a C* cbmpact manifold and f :M - M a C'
map Let | be the set of f-invariant probability measures on M:

a) There is a Borel subset Q of M, such that p(Q) =1 for every pel,
and for each x € Q the following holds. There is a strictly increasing sequence
of subspaces:

0=VOcyVc. cVsd=TM

such that, for r =1, ..., s(x),

lim %log IT.f"ull = A" if ueyM\pr-»

n—co
and 2" < 1P < < A5 we may have A" = — co. [The V" and
AP are umquely defmed with these properties. and independent of the
cho’cc of C° Riemann metric used to define |- |]]. The maps x — s(x),
(VI VEE (A, L 28 are Borel.

b) Let m” = dim V" — dim v~V fo}' r=1,...,s8(x) and define

L= Y moap

r: A(r)>0
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Then, for every pel the entropy h(p) satisfies
h(p) < p(4,)

[where p(A,) = | p(dx)A_,(x)].

It is good to remember that the set I is convex and compact for the
vague topology, and that h:I — R is affine, but we shall not make use of
these facts*.

We may assume that M has dimension m. Using a suitable Borel
partition of M, we can trivialize the tangent bundle and write TM ~ M x R™
Therefore we can apply Theorem | with 7=/, any pel, and T(x) replaced
by T.f. We let Q be the set of all x such that the limit (1) exists, and we
take the A" and V" as in Theorem 1. With these choices it is clear that
part (a) of Theorem 2 holds. Part (b) is proved in Section 2.

2. Proof of the inequality h(p) < p(4,).

In what follows we fix pel. We shall make use of the fact that, in view
of (2),

3 lim —og 1T,/ = 1,9

n—o

Consider a smooth triangulation of M and for each m-dimensional
simplex of the triangulation let there be a local chart such that the simplex
is defined by

4) t,>0,..,t

It is convenient to assume that the boundary of each simplex has p-measure
0. This can be obtained by moving the triangulation by a small diffeomor-
phism of M (one pushes the triangulation successively by vector fields with
small compact supports covering M so that the mass of the boundaries
becomes zero). Given an integer N > 0, we decompose the simplex (4)
into subsets by the planes

We can assume that these planes have p-measure O for all N (use a small
diffeomorphism of the simplex reducing to the identity on the boundary).

*They could be used to reduce the proof of the inequality A(p) < p(4,) to the case where
p is ergodic.
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We have thus obtained a partition d, of M (up to sets of measure zero) into
cubes and (near the boundary of the simplexes) pieces of cubes.

a) Given a Riemann metric on M, there is C >0, and for each n there
is N(n), such that if N > N(n) the number of sets of d, intersected f"S where
Sedy is less than

) CITf M

for any xeS.

Since N is large, diam S is small, and f" restricted to S is close to its
linear part estimated at any xe S when computed in terms of the variables
t, corresponding to the simplex in which S lies and to the simplex(es) in
which f"S lies. Using the equivalence of the Riemann metric on M and of
the Euclidean metric in the variables ¢, we find that there is K >0 (inde-
pendent of n, N) such that f"S lies in a rectangular parallelepiped with

sides K—al—,..,, K a K

K
N —-LN SN N where al,...,ap>1 and

ay,...,a, = max {[(T, /M ull :ue(T,M)*, llull = 1} = T [

. 1 .
Now, a cube of sides N ¢ intersect only a bounded number of sets

in the decomposition of a simplex by planes t; = % Therefore the number

of sets of J, intersected by f”S is bounded by an expression of the form (5).
b) The entropy of p with respect to f" and the partition O, satisfies
6) hya(p, dy) <log C + {p(dx)log || (T, f"™I.

Each xeM is in some S=S5,nS, n...NnS,_, where §,ef ™ 5,, and
we can define

p(SASY . p(SAS)
h X) = — k 10 k
N'"'k( ) S.e;"":izv p(S) & p(S)
Then
. N et
hen(p, dy) = lim T 2 fp(dx)hN’"’k(x)
- ® k=0 .

and, for k>0, (a) yields
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hy %) < 1og [CIT S ]
Therefore (6) holds.

c) End of proof.
Letting N tend to + oo in (6) and dividing by n we obtain

1 1 1
hp(p) = —h.ulp) < —-log C + [p(dx)——log (T f")* I

Since %]og I(T.f™*|l is positive and bounded above, (3) permits to
conclude that
hy(p) < §p(dx) 4,(x).

3. Remark

The inequality h(p) < p(4,) was known for axiom A diffeomorphisms
and for the time one map of axiom A4 flows [5], [6]. It is also obvious for
quasi-periodic maps of the m-torus. A related result was proved for
certain diffeomorphisms preserving a smooth measure by Margulis and
Pesin [3]. In all those cases one has

sup [h(p) — p(4,)] = 0.
P

Question. Is this “variational principle” true in general?
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