An inequality for the entropy of differentiable maps

David Ruelle *

1. Introduction and statement of results.

The purpose of this note is to prove Theorem 2 below, which gives an upper bound to the measure-theoretic entropy $h(\rho)$ of any probability measure ρ invariant under a differentiable map f of a compact manifold M into itself. The upper bound is in terms of characteristic exponents introduced by the non-commutative ergodic theorem of Oseledec [2]. We first formulate a version of the latter theorem which will be suited to our purposes.

Theorem 1. Let (M, Σ, ρ) be a probability space and $\tau: M \to M$ a measurable map preserving ρ . Let also $T: M \to \mathcal{M}_n(\mathbb{R})$ be a measurable map into the $m \times m$ matrices, such that*

$$\log^+ ||T(\cdot)|| \in L^1(M, \rho)$$

and write

$$T_x^n = T(\tau^{n-1}x) \dots T(\tau x) T(x).$$

There is $\Omega \subset M$ such that $\rho(\Omega) = 1$ and for all $x \in \Omega$

(1)
$$\lim_{n \to \infty} (T_{\lambda}^{n*} T_{x}^{n})^{1/2n} = \bigwedge_{x}$$

exists [* denotes matrix transposition].

Let $\exp \lambda_x^{(1)} < \ldots < \exp \lambda_x^{(s(x))}$ be the eigenvalues of \bigwedge_x [with possibly $\lambda_x^{(1)} = -\infty$], and $U_x^{(1)}, \ldots, U_x^{(s(x))}$ the corresponding eigenspaces. If $V_x^{(r)} = U_x^{(1)} + \ldots + U_x^{(r)}$ we have

$$\lim_{n\to\infty} \frac{1}{n} \log ||T_x^n u|| = \lambda_x^{(x)} \quad \text{when} \quad u \in V_x^{(r)} \setminus V_x^{(r-1)}$$

for r = 1, ..., s(x).

The theorem published by Oseledec assumes τ and T invertible. Its proof has been simplified by Raghunathan [4]. The above result can be obtained by modifying Raghunathan's argument.

Recebido em setembro de 1977.

^{*} We write $\log^+ x = \max \{0, \log x\}$.

D. Ruelle

Let $m_x^{(r)} = \dim U_x^{(r)} = \dim V_x^{(r)} - \dim V_x^{(r-1)}$. The numbers $\lambda_x^{(1)}, \ldots, \lambda^{(s(x))}$, with multiplicities $m_x^{(1)}, \ldots, m_x^{(s(x))}$ constitute the spectrum of (ρ, τ, T) at x. The $\lambda_x^{(r)}$ are also called characteristic exponents. When n tends to ∞ , $\frac{1}{n} \log ||T_x^n||$ tends to the maximum characteristic exponent $\lambda_x^{(s(x))}$. The spectrum is τ -invariant; if ρ is τ -ergodic the spectrum is almost every where constant.

Let $T^{\Lambda p}: M \to \mathcal{M}_{\binom{m}{p}}(\mathbb{R})$ be the p-th exterior power of T;

we have

$$T^{\Lambda p}(\tau^{n-1}x) \dots T^{\Lambda p}(\tau x) T^{\Lambda p}(x) = (T_{\nu}^{n})^{\Lambda p}$$

and the spectrum of $(\rho, \tau, T^{\Lambda p})$ is determined by

$$\lim_{n\to\infty} \left[(T_x^n)^{\Lambda p} * (T_x^n)^{\Lambda p} \right]^{\frac{1}{2n}} = \bigwedge_x^{\Lambda p}.$$

For $T^{\Lambda} = \bigoplus_{p} T^{\Lambda p}$ we obtain in particular

(2)
$$\lim_{n \to \infty} \frac{1}{n} \log (T_x^n)^{\Lambda} = \sum_{r: \lambda_x^{(r)} > 0} \lambda_{m_x}^{(r)} \lambda_x^{(r)}$$

Theorem 2. Let M be a C^{∞} compact manifold and $f: M \to M$ a C^{1} map Let I be the set of f-invariant probability measures on M:

a) There is a Borel subset Ω of M, such that $\rho(\Omega) = 1$ for every $\rho \in I$, and for each $x \in \Omega$ the following holds. There is a strictly increasing sequence of subspaces:

$$0 = V_x^{(0)} \subset V_x^{(1)} \subset \ldots \subset V_x^{(s(x))} = T_x M$$

such that, for r = 1, ..., s(x),

$$\lim_{n\to\infty}\frac{1}{n}\log\|T_xf^nu\|=\lambda_x^{(r)}\quad\text{if}\quad u\in V_x^{(r)}\backslash V_x^{(r-1)}$$

and $\lambda_x^{(1)} < \lambda_x^{(2)} < \ldots < \lambda_x^{(s(x))}$; we may have $\lambda_x^{(1)} = -\infty$. [The $V_x^{(r)}$ and $\lambda_x^{(r)}$ are uniquely defined with these properties, and independent of the choice of C° Riemann metric used to define $\|\cdot\|$]. The maps $x \to s(x)$, $(V_x^{(1)}, \ldots, V_x^{(s(x))})$, $(\lambda_x^{(1)}, \ldots, \lambda_x^{(s(x))})$ are Borel.

b) Let
$$m_x^{(r)} = \dim V_x^{(r)} - \dim V_x^{(r-1)}$$
 for $r = 1, ..., s(x)$ and define
$$\lambda_+(x) = \sum_{r: \lambda_x^{(r)} > 0} m_x^{(r)} \lambda_x^{(r)}$$

Then, for every $\rho \in I$ the entropy $h(\rho)$ satisfies

$$h(\rho) \le \rho(\lambda_+)$$

[where $\rho(\lambda_+) = \int \rho(dx)\lambda_+(x)$].

It is good to remember that the set I is convex and compact for the vague topology, and that $h: I \to \mathbb{R}$ is affine, but we shall not make use of these facts*.

We may assume that M has dimension m. Using a suitable Borel partition of M, we can trivialize the tangent bundle and write $TM \simeq M \times \mathbb{R}^m$. Therefore we can apply Theorem 1 with $\tau = f$, any $\rho \in I$, and T(x) replaced by $T_x f$. We let Ω be the set of all x such that the limit (1) exists, and we take the $\lambda_x^{(r)}$ and $V_x^{(r)}$ as in Theorem 1. With these choices it is clear that part (a) of Theorem 2 holds. Part (b) is proved in Section 2.

2. Proof of the inequality $h(\rho) \le \rho(\lambda_+)$.

In what follows we fix $\rho \in I$. We shall make use of the fact that, in view of (2),

(3)
$$\lim_{n \to \infty} \frac{1}{n} \log ||T_x f^n|^{\Lambda}|| = \lambda_+(x).$$

Consider a smooth triangulation of M and for each m-dimensional simplex of the triangulation let there be a local chart such that the simplex is defined by

(4)
$$t_1 \ge 0, \dots, t_m \ge 0, \quad t_1 + \dots + t_m \le 1.$$

It is convenient to assume that the boundary of each simplex has ρ -measure 0. This can be obtained by moving the triangulation by a small diffeomorphism of M (one pushes the triangulation successively by vector fields with small compact supports covering M so that the mass of the boundaries becomes zero). Given an integer N > 0, we decompose the simplex (4) into subsets by the planes

$$t_1 = \frac{k_1}{N}$$
 for $i = 1, ..., N - 1$.

We can assume that these planes have ρ -measure 0 for all N (use a small diffeomorphism of the simplex reducing to the identity on the boundary).

^{*}They could be used to reduce the proof of the inequality $h(\rho) \le \rho(\lambda_+)$ to the case where ρ is ergodic.

86 D. Ruelle

We have thus obtained a partition δ_N of M (up to sets of measure zero) into cubes and (near the boundary of the simplexes) pieces of cubes.

a) Given a Riemann metric on M, there is C>0, and for each n there is N(n), such that if N>N(n) the number of sets of δ_N intersected f^nS where $S\in\delta_N$ is less than

$$C \parallel T_{\mathbf{r}} f^{\mathbf{n}})^{\Lambda} \parallel$$

for any $x \in S$.

Since N is large, diam S is small, and f^n restricted to S is close to its linear part estimated at any $x \in S$ when computed in terms of the variables t_i corresponding to the simplex in which S lies and to the simplex(es) in which f^nS lies. Using the equivalence of the Riemann metric on M and of the Euclidean metric in the variables t_i , we find that there is K > 0 (independent of n, N) such that f^nS lies in a rectangular parallelepiped with sides $K = \frac{a_1}{N}, \ldots, K = \frac{a_p}{N}, \frac{K}{N}, \ldots, \frac{K}{N}$, where $a_1, \ldots, a_p > 1$ and

$$a_1, \dots, a_p = \max\{||(T_x f^n)^{\Lambda} u|| : u \in (T_x M)^{\Lambda}, ||u|| = 1\} = T_x f^n)^{\Lambda}||.$$

Now, a cube of sides $\frac{1}{N}$ can intersect only a bounded number of sets in the decomposition of a simplex by planes $t_i = \frac{k_i}{N}$. Therefore the number of sets of δ_N intersected by f^nS is bounded by an expression of the form (5).

b) The entropy of ρ with respect to f^n and the partition δ_N satisfies

(6)
$$h_{f^n}(\rho, \delta_N) \le \log C + \int \rho(dx) \log \| (T_x f^n)^{\Lambda} \|.$$

Each $x \in M$ is in some $S = S_0 \cap S_1 \cap ... \cap S_{k-1}$ where $S_j \in f^{-nj} \delta_N$, and we can define

$$h_{N,n,k}(x) = -\sum_{S_k \in \mathcal{F}^{-nk} \delta_N} \frac{\rho(S \cap S_k)}{\rho(S)} \log \frac{\rho(S \cap S_k)}{\rho(S)}$$

Then

$$h_{f^n}(\rho, \delta_N) = \lim_{k \to \infty} \frac{1}{k} \sum_{k=0}^{k-1} \int \rho(dx) h_{N,n,k}(x)$$

and, for k > 0, (a) yields

$$h_{N,n,k}(x) \le \log \left[C \| (T_x f^n)^{\Lambda} \| \right].$$

Therefore (6) holds.

c) End of proof.

Letting N tend to $+\infty$ in (6) and dividing by n we obtain

$$h_f(\rho) = \frac{1}{n} h_{f^n}(\rho) \le \frac{1}{n} \log C + \int \rho(dx) \frac{1}{n} \log ||(T_x f^n)^{\Lambda}||.$$

Since $\frac{1}{n} \log ||(T_x f^n)^{\Lambda}||$ is positive and bounded above, (3) permits to conclude that

$$h_f(\rho) \le \int \rho(dx) \, \lambda_+(x).$$

3. Remark

The inequality $h(\rho) \le \rho(\lambda_+)$ was known for axiom A diffeomorphisms and for the time one map of axiom A flows [5], [6]. It is also obvious for quasi-periodic maps of the m-torus. A related result was proved for certain diffeomorphisms preserving a smooth measure by Margulis and Pesin [3]. In all those cases one has

$$\sup_{\rho} [h(\rho) - \rho(\lambda_+)] = 0.$$

Question. Is this "variational principle" true in general?

References

- [1] R. Bowen and D. Ruelle, The ergodic theory of axiom A flows. Inventiones math. 29, 181-202 (1975).
- [2] V. I. Oseledec, A multiplicative ergodic theorem. Ljapunov characteristic numbers for dynamical systems. Trudy Moskov. Mat. Obsc. 19, 179-210 (1968). English. Translation. Trans. Moscow Math. Soc. 19, 197-231 (1968).
- [3] Ja. B. Pesin, Ljapunov characteristic exponents and ergodic properties of smooth dynamical systems with an invariant measure. Dokl. Akad. Naul. SSSR 226 N.º 4, 774-777 (1976). English translation. Soviet. Math. Dokl. 17 N.º 1, 196-199 (1976).
- [4] M. S. Raghunathan, A proof of Oseledec' multiplicative ergodic theorem. Unpublished.
- [5] D. Ruelle, A measure associated with axiom A atractors. Amer. J. Math. 98, 619-654 (1976).

Instituto de Matemática Pura e Aplicada, Rio de Janeiro, Brasil Institut des Hautes Études Scientifiques, Bures-sur-Yvette, França